
SC800

nanoSynth®

INTEGRATED 25 MHZ TO 6 GHZ

SMT SYNTHESIZER

GENERAL DESCRIPTION

The SC800 nanoSynth® is a fully integrated

broadband CW signal synthesizer that combines

multiple PLL, DDS, and frequency dividers into a

rugged and miniature 2”x1” surface mountable

package. The output frequency range is 25 MHz to

6 GHz with average output power of +10 dBm.

Tuning at 1 Hz resolution, the multiple PLL

architecture eliminates close-in phase spurs that

are associated with fractional-N PLLs. The SC800

has low phase noise of -118 dBc/Hz at 10 kHz offset

from a 1 GHz carrier. The SC800 integrates low

noise linear regulators and an output RF amplifier

to greatly improve the pushing and pulling

performance. To simplify user communication with

the device, an onboard microprocessor performs all

necessary computations to control and set the

output frequency, reducing the complexity and

number of instruction registers.

Refer to the theory of operation and register map sections of

this document for more information.

TYPICAL APPLICATIONS

 Automated device/IC testers

 Test and measurement equipment

 Wireless communication equipment

 Frequency converter local oscillator

 Digital data converter clock source

 Network equipment

 PRODUCT FEATURES

 25 MHz to 6 GHz output range

 1 Hz frequency tuning resolution

 Residual phase noise better than -118 dBc/Hz

at 10 kHz offset from a 1 GHz carrier

 Rugged and miniature 2”x1” SMT package

 Frequency list mode

 Single supply operation

FUNCTIONAL BLOCK DIAGRAM

S
C

L
K

S
D

I

S
D

O

C
S

S
R

D
Y

/T
M

S

S
M

O
D

E
/T

D
O

C
L

K
S

E
L

/T
D

I

D
N

C
/T

C
K

G
N

D

G
N

D

T
R

IG
IN

G
N

D

G
N

D

G
N

D

G
N

D

N
C

GND

NC

GND

GND

GND

GND

GND

RFOUT

GND

GND

GND

GND

GND

1 2 3 4

LCKSTATUS

REFCLKIN

DNC/USB+

DNC/USB-

DNC/VBUS

5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

27

26

25

24

23

22

21

20

19

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

46

47

48

49

50

51

52

53

54

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

D
N

C
/U

S
B

IS
P

T
E

S
T

V
D

D

V
D

D

N
C

N
C

OUT

REG

FINE

LOOP

COARSE

LOOP

SUM

LOOP
DDS

MULTIPLE-

LOOP CORE
FREQ

DIVIDER

Micro-

processor

RF

BUFF

REF

BUFF

R
E

S
E

T

T
R

IG
O

U
T

CORE

REG2

CORE

REG3
CORE

REG1

DIG

REG

EEPROM

V
D

D

G
N

D

Administrator
打字机

Administrator
打字机

Administrator
打字机

Administrator
打字机

Administrator
打字机

Administrator
打字机

Administrator
打字机
北京坤驰科技有限公司 代理销售：010-82894372/15321373960 网址：www.queentest.cn

Administrator
打字机

Administrator
打字机

 SC800 SPECIFICATIONS

Rev 1.1 | Page 2 of 26

SPECTRAL SPECIFICATIONS

RF output frequency range 25 MHz to 6 GHz

Tuning

Resolution .. 1 Hz

 Speed (settled to .1 ppm) 1 < 500 us

Sideband phase noise 2 (dBc/Hz)

RF Frequency

Offset .1 GHz 1 GHz 3 GHz 6 GHz

100 Hz -108 -93 -86 -80

1 kHz -130 -113 -106 -99

10 kHz -135 -118 -110 -102

100 kHz -136 -118 -110 -103

1 MHz -150 -140 -132 -125

10 MHz -152 -152 -149 -147

Sideband phase spurs

< 500 kHz -60 dBc typical

500 kHz to 2 MHz -65 dBc typical

Reference frequency

CLKSEL (state) 0 1

Frequency (MHz) 200 100

AMPLITUDE SPECIFICATIONS

Output power

500 MHz +7 dBm typical

3000 MHz +5 dBm typical

6000 MHz +0 dBm typical

2nd order harmonics < -15 dBc typical

Sub-harmonics 3 < -60 dBc typical

Spurious signals 4 < -65 dBc typical

Reference input power

Minimum +3 dBm

Typical .. +7 dBm

Maximum +10 dBm

ELECTRICAL SPECIFICATIONS

Parameter Min Typ Max Units

Voltage supply VDD 3.3 3.6 5.5 V

Supply current IDD 870 890 910 mA

Total power

dissipation (3.6V)
3.15 3.20 3.25 W

Low-level input

logic voltage
-0.3 0.8 V

High-level input

logic voltage
2.0 3.6 V

Low-level output

logic voltage
 0.4 V

High-level output

logic voltage
2.9 V

ABSOLUTE MAXIMUM RATINGS

Parameter Rating

Supply voltage VDD 5.5 V

Logic voltage 3.6 V

Continuous power dissipation 5 W

Storage temperature -10 to +125 °C

Operating temperature

(measured case temperature)
0 to +85 °C

NOTES

1. For tuning steps less than 10 MHz.

2. The phase noise is largely dependent on the external

reference. The specifications are based on a reference

signal with the following maximum phase noise

levels normalized to 100 MHz:

Offset

(Hz)
100 1k 10k 100k 1M

dBc/Hz -115 -140 -155 -165 -165

3. The fundamental frequency range of the final

oscillator is 3 GHz to 6 GHz. These sub-harmonics

are not due to multiplication but are due to leakage

of the divided signal.

4. Spurious signals are due to intermodulation of the

internal oscillator signals. They generally reside from

a few 100 kHz and greater away from the carrier.

 SC800 SPECIFICATIONS

Rev 1.1 | Page 3 of 26

PHASE NOISE @ 2.00501 GHZ

CF = 3.0011 GHZ, SPAN 5 MHZ

CF = 2.00501 GHZ, SPAN 5 MHZ

SUB-HARMONICS @ CF= 3-6 GHZ

CF = 3.0011 GHZ, SPAN 100 MHZ

HARMONICS

 SC800 SPECIFICATIONS

Rev 1.1 | Page 4 of 26

PIN DESCRIPTION

Pin Number Function Description

2, 3, 4, 5, 6, 9, 10, 11,

12, 16, 18, 19, 20, 22,

23, 24, 25, 27, 28, 29,

31, 33, 36, 37, 49, 51,

53, 54

GND

Must be connected to RF or DC ground. It is important to

place as many ground vias as possible around or in these

ground pads to improve signal performance as well as thermal

conduction from the device to the board.

8, 13, 14 VDD Positive supply voltage inputs.

15, 17, 26, 30 NC Not physically connected internally.

1 TEST Factory test pin. Terminate with 1000pF to GND.

7 DNC/USBISP

If held logic low during a reset event or power-up, this pin

will put the device into in-system programming (ISP) mode

for firmware upgrades. This pin should always be pulled high

using a resistor (10k recommended).

21 RFOUT AC-coupled RF output port.

32 TRIGOUT

May be programmed to put out a trigger pulse for list mode

events. See the LIST_MODE_CONFIG register for more

information.

34 TRIGIN
Hardware trigger to start/stop or step a sweep/list event. See

the LIST_MODE_CONFIG register for more information.

35

Logic low will put the device in reset. On power up, it is

recommended to send a reset signal to the device to ensure

proper operation.

38, 39, 40, 41

DNC/TCK,

CLKSEL/TDI,

SMODE/TDO

, SRDY/TMS

Along with pin 35, these JTAG programming pins are used by

the factory to set the device firmware. The user may wire

them for field firmware updates. Under normal operation,

these pins should be pulled high with a 10k resistor. Pin 38 is

reserved strictly for the JTAG TCK function. Pin 39

(CLK_SEL) selects either a 200/100 MHz reference on 0/1

respectively. Pin 40 (SMODE) pulled low disables the USB

port. Pin 41 (SRDY) is the serial ready monitor pin.

42, 43, 44, 45
 , SDI, SDO,

SCLK

4-wire SPI bus. Device is always in slave mode. SDI is data

from the master/host, SDO is data to the master/host, SCLK is

the host clock, and is chip select. See section on Serial

Programming for more information.

46, 47, 48
VBUS, USB-,

USB+

Optional USB interface to the device. They may be left

unconnected if the feature is not available or not used on the

device.

50 REFCLKIN
Reference signal input. The clock frequency of the reference

should match the setting of Pin 39. This pin is AC-coupled.

52 LCKSTATUS
Active high when all phase-locked loops are locked. If one or

more of the loops fail to achieve lock, pin will go low.

 SC800 SPECIFICATIONS

Rev 1.1 | Page 5 of 26

MECHANICAL DATA

ORDER INFORMATION

7100046-01 .. SC800, nanoSynth 6 GHz Integrated SMT Synthesizer

 SC800 THEORY AND OPERATION

Rev 1.1 | Page 6 of 26

THEORY AND OPERATION

Despite its small size, the SC800 is an instrument-grade, high performance surface mount synthesizer

with easy to program register-level control. It functions as a standard synthesized source with the

added capability of a sweep/list mode that makes it ideal for applications ranging from automated test

systems to telecommunication equipment to scientific research labs. Being small and fully integrated,

it is the ideal solution for board-level designs that require a high performance RF source(s) without

having to invest much engineering effort. Figure 1 shows the block diagram of the device, and the

following sub-sections provide details to its operation.

Figure 1. Block diagram of the SC800.

RF GENERATION

The SC800 is a 25 MHz to 6 GHz low phase noise and low spur synthesizer, using a hybrid PLL loop

architecture comprised of three phase-locked loops and a DDS function. All PLLs are operated in

integer division feedback mode, thus circumventing fractional feedback mode-induced spurs. Fine

tuning is accomplished with the variable modulus DDS, providing exact frequency generation.

Isolation between the internal oscillators, their mixed IF products, harmonics, and inter-modulation

products are accomplished by internal EMI sealed cavities. Using a hybrid PLL loop architecture with

well-shielded cavities improves the overall phase noise performance and reduces the spurious signal

content of this compact size frequency synthesizer. Signals are synthesized from the external

reference clock; either a 100 MHz or 200 MHz clock. A 200 MHz clock reduces the side band spurs.

The DDS running at a higher clock rate reduces the amount and levels of DDS-related spurs.

S
C

L
K

S
D

I

S
D

O

C
S

S
R

D
Y

/T
M

S

S
M

O
D

E
/T

D
O

C
L

K
S

E
L

/T
D

I

D
N

C
/T

C
K

G
N

D

G
N

D

T
R

IG
IN

G
N

D

G
N

D

G
N

D

G
N

D

N
C

GND

NC

GND

GND

GND

GND

GND

RFOUT

GND

GND

GND

GND

GND

1 2 3 4

LCKSTATUS

REFCLKIN

DNC/USB+

DNC/USB-

DNC/VBUS

5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

27

26

25

24

23

22

21

20

19

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

46

47

48

49

50

51

52

53

54

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

D
N

C
/U

S
B

IS
P

T
E

S
T

V
D

D

V
D

D

N
C

N
C

OUT

REG

FINE

LOOP

COARSE

LOOP

SUM

LOOP
DDS

MULTIPLE-

LOOP CORE
FREQ

DIVIDER

Micro-

processor

RF

BUFF

REF

BUFF

R
E

S
E

T

T
R

IG
O

U
T

CORE

REG2

CORE

REG3
CORE

REG1

DIG

REG

EEPROM

V
D

D

G
N

D

 SC800 THEORY AND OPERATION

Rev 1.1 | Page 7 of 26

Furthermore there are less inter-modulation spurs that are product of the reference harmonics and LO

signals.

SUPPLY REGULATION

Each section of the synthesizer has an ultra low noise linear regulator, providing not just low supply

noise but further signal isolation that could otherwise leak through common supply lines. There are

eight such regulators to serve the output RF section, RF feedback section, summing PLL, coarse PLL,

fine PLL, mixer IF section, DDS, and the microcontroller and its related circuitry. Most of these

regulators can be turn-off to reduce power consumption by invoking the DEVICE_STANDBY register

(see the Device Registers section).

INTERNAL EEPROM

The SC800 contains an EEPROM whose memory space is divided into calibration and user data spaces.

The calibration data space contains SC800 device information such as serial number, hardware

revision, firmware revision, and production date. In addition, this space holds the calibration data for

the wideband primary 3 GHz – 6 GHz VCO. This VCO calibration data is used to properly program

the assisting VCO DAC to assure locking and improve tuning speed. The calibration space of the

EEPROM is not user modifiable.

The user data space contains the default startup configuration of the device such as the single fixed

tone mode frequency and sweep/list mode operation. It also holds the list mode configuration

parameters such as sweep behavior (saw or triangular waveform), software or hardware trigger,

start/stop/step frequencies, dwell time, sweep/list cycles, etc. Space is allocated for 2048 frequency

points that the user may choose to store for list mode operation.

MODES OF RF GENERATION

The SC800 has both single fixed tone and list mode operation. In single fixed tone mode, it operates as

a normal synthesizer where the user writes the frequency (RF_FREQUENCY) register to change the

frequency. In list mode, the device is triggered to automatically run through a set of frequency points

that are either entered directly by the user or pre-computed by the device based on user parameters.

Configuration of the device for list mode operation is accomplished by setting up the

LIST_MODE_CONFIG register.

Sweep Function

When the frequency points are generated based on the start/stop/step set of frequencies, this is (in the

context of this product) known as putting the device into sweep. When the sweep function is enabled,

the frequency points are incrementally stepped with a constant step size either in a linearly increasing

or linearly decreasing fashion.

 SC800 THEORY AND OPERATION

Rev 1.1 | Page 8 of 26

List Function

The list function requires that the frequency points are read in from a list provided by the user. The

user will need to load the frequency points into the list buffer via the LIST_BUFFER_WRITE register,

or have the device read the frequency points from the EEPROM into it.

Sweep Direction

The sweep can be chosen to start at the beginning of a list and incrementally step to the end of the list

or vice versa.

Sweep Waveform

The list of frequency points may be swept in a saw-tooth manner or triangular manner. If sawtooth is

selected, upon reaching the last frequency point the device returns back to the starting point. Plotting

frequency versus time reveals a sawtooth pattern. If triangular is selected, the device will sweep

linearly from the starting point, then reverse its direction after the last (highest or lowest) frequency

and sweep backwards toward the start point, mapping out a triangular waveform on a frequency

versus time graph.

Dwell Time

The dwell time at each frequency, in either sweep or list modes, is determined by writing to the

LIST_DWELL_TIME register. The dwell time step increment is 500 s. However, the recommended

minimum dwell time is 1 ms, which allows sufficient time for the signal to settle before a

measurement is made. Due to the size limitation of the onboard RAM, it is not possible to have a pre-

calculated configuration parameters list that could be used to program the various functions of the

device, decreasing the setup time of the device for frequency change. As a result, for each frequency

change the configuration parameters are dynamically computed. This overhead computational time to

handle the mathematics, triggers, timers, and interrupts may increase the effective settling time close

to or slightly exceeding 500 s.

List Cycles

The number of repeat cycles for a sweep or list is set by writing the LIST_CYCLE_COUNT register.

Writing the value 0 to the register will cause the device to repeat the sweep/list forever until a trigger

is sent or the RF mode is changed to single fixed tone mode via the RF_MODE register. Upon

completion of the a cycle, the frequency may be set to end on the last frequency point or return back

the starting point. This is cycle ending behavior is configured with bit [5] of the

LIST_MODE_CONFIG register.

Trigger Sources

The device may be set up for software or hardware triggering. This is defined in bit [4] of the

LIST_MODE_CONFIG register. If software trigger is selected, writing the LIST_SOFT_TRIGGER

register will trigger the device to perform the sweep/list function defined in the

 SC800 THEORY AND OPERATION

Rev 1.1 | Page 9 of 26

LIST_MODE_CONFIG register. The device may also be triggered via pin 34, the hardware trigger pin

(TRIGIN). Hardware trigger occurs on a high to low transition in the state of this pin.

Trigger In Modes

The device may be triggered to start a sweep or list then uses the next trigger to stop it. In triggered

start/stop mode, alternating triggers will start and stop the sweep/list. In this mode, start triggering

will always return the frequency point to the beginning of the sweep/list. It does not continue from

where it had left off from a stop trigger. The device may also be triggered to step to the next frequency

with each start trigger. This is known as the triggered step mode. Software triggering cannot perform

the step trigger function. This can only be done through hardware triggering. When hardware step

triggering has started, performing a software trigger or changing the RF mode to single fixed tone will

take the device out of step trigger state before a cycle is completed.

Trigger Out Modes

The device can be set to send out a high to low transition signal when the configuration of a frequency

by the device is completed; that is, it has completed all necessary computations, and has successfully

written data to the appropriate components. This trigger pulse can be sent on the completion of every

step frequency or on the last frequency of a sweep cycle. This trigger signal is present on pin 32

(TRIGOUT).

Communication Interfaces

The default communication channel to the device is via the SPI bus. An optional USB interface is also

available. If the USB port is not used or available for controlling the device, it is nevertheless

recommended to wire the USB interface pins to a header for future firmware upgrade capability.

SPI Interface

In addition to the 4-wire SPI (, SDO, SDI, and SCLK) signal lines, there is also an alternative serial

ready SRDY line. Upon reception of a register command, the device takes time to execute the

command instruction, such as setting a new frequency. While the device is busy, the SRDY line will

go low and returns high upon execution completion. Pulling pin 40 (SMODE) high enables

simultaneous operation of SPI and USB, and grounding this pin disables USB. It is highly

recommended that the USB port be disabled if it is not used. Detailed SPI read and write operations

are discussed in detail in the Serial Peripheral Interface (SPI) section.

USB Interface

The SC800 has an built-in USB controller configured in client mode. The three wires VBUS, USB-,

and USB+ can be routed directly to a USB connector or an embedded host port to access the device.

The transfer types supported by the device are control, interrupt, and bulk. The USB port can be

turned off by grounding or pulling low pin 40. More information on the use of the USB interface and

its software API are provided in the USB Interface section.

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 10 of 26

DEVICE REGISTERS

Communication to the SC800 is performed by writing to and reading from its set of control and query

registers respectively. The control registers are used to set/configure the device, hence a one-way

communication. The query registers on the other hand request the device to perform an operation

with the expectancy of returned results, hence a two-way communication. The table below lists the

device registers and provides the necessary details for each.

Table 1. Register 0x02 RF_FREQUENCY (5 Bytes)

Bit Type Name Width Description

[39:0] WO Frequency Word 40 Sets the single fixed tone frequency.

Table 2. Register 0x04 RF_MODE (1 Byte)

Bit Type Name Width Description

[0] WO RF Mode 1 1 = Sweep/list mode. In this mode writing to

register 0x02 will be unresponsive. This register

must be called first for sweep/list triggering to

function.

0 = Single fixed tone mode. This mode must be

set to change the frequency value via register

0x02.

[7:1] WO Reserved 7 Set all bits to 0.

Table 3. Register 0x05 LIST_MODE_CONFIG (2 Bytes)

Bit Type Name Width Description

[0] WO List/Sweep 1 0 = List mode. Device gets its frequency points

from the list buffer uploaded via the

LIST_BUFFER_WRITE register (0x0D).

1 = Sweep mode. The device computes the

frequency points using the start, stop, and step

frequencies.

[1] WO Sweep Direction 1 0 = Forward. In the forward direction, the

sweeps starts from the lowest start frequency or

starts at the beginning of the list buffer.

1 = Reverse. In the reverse direction, the sweep

starts with the stop frequency and steps down

toward the start frequency or starts at the end

and steps toward the beginning of the buffer.

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 11 of 26

[2] WO Sweep Waveform 1 0 = Sawtooth waveform. Frequency returns to

the beginning frequency upon reaching the end

of a sweep cycle.

1 = Triangular waveform. Frequency reverses

direction at the end of the list and steps back

towards the beginning to complete a cycle.

[3] WO Soft/Hardware Trigger 1 0 = Software trigger. Software trigger can only

be used to start and stop a sweep/list cycle. It

does not work for step-on-trigger mode.

1 = Hardware trigger. A high-to-low transition

on the TRIGIN pin will trigger the device. It can

be used for both start/stop or step-on-trigger

functions.

[4] WO Start/Stop or Step 1 0 = Start/Stop behavior. The sweep starts and

continues to step through the list for the

number of cycles set, dwelling at each step

frequency for a period set by the

LIST_DWELL_TIME register. The sweep/list

will end on a consecutive trigger.

1 = Step-on-trigger. This is only available if

hardware triggering is selected. The device will

step to the next frequency on a trigger. Upon

completion of the number of cycles (set by the

LIST_CYCLE_COUNT register), the device will

exit from the stepping state and stop. Further

triggering will set the device back into the

stepping state. To exit the stepping state and

stop before reaching the end of a cycle, a

software trigger must to be sent or a change in

the RF mode to single fixed tone needs to be

made.

[5] WO Return to Start 1 0 = Stop at end of sweep/list. The frequency will

stop at the last point of the sweep/list.

1 = Return to start. The frequency will return

and stop at the beginning point of the sweep or

list after a cycle.

[6] WO Trigger Output 1 0 = No trigger output.

1 = Puts a trigger pulse on the TRIGOUT pin

[7] WO Trigger Out Mode 1 0 = Puts out a trigger pulse at each frequency

change, right after all internal devices are

configured.

1 = Puts out a trigger pulse at the completion of

each sweep/list cycle.

[15:8] WO Reserved 8 Set all bits to 0.

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 12 of 26

Table 4. Register 0x06 LIST_SOFT_TRIGGER (1 Byte)

Bit Type Name Width Description

[7:0] WO Reserved 8 Set all bits to 0. Calling this register provides a

soft trigger to the device.

Table 5. Register 0x07 LIST_START_FREQ (5 Byte)

Bit Type Name Width Description

[39:0] WO List Start Frequency 40 Sets the start frequency for a sweep. Start

frequency should always be lower than the stop

frequency. The Sweep Direction bit [1] of

register 0x05 should be used to determine where

the sweep should begin.

Table 6. Register 0x08 LIST_STOP_FREQ (5 Bytes)

Bit Type Name Width Description

[39:0] WO List Stop Frequency 40 Sets the stop frequency for a sweep. Stop

frequency should always be greater than the

start frequency. The Sweep Direction bit [1] of

register 0x05 should be used to determine where

the sweep should begin.

Table 7. Register 0x09 LIST_STEP_FREQ (5 Bytes)

Bit Type Name Width Description

[39:0] WO List Step Frequency 40 Sets the step frequency for a sweep. Step size

should not exceed the difference between the

start and stop frequencies.

Table 8. Register 0x0A LIST_DWELL_TIME (4 Bytes)

Bit Type Name Width Description

[31:0] WO List Dwell Time 32 Set the dwell time at each step frequency. The

Dwell time is incremented in 500 s increments.

For example, to produce a 10 ms dwell time the

value written to this register is 20d.

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 13 of 26

Table 9. Register 0x0B LIST_CYCLE_COUNT (4 Bytes)

Bit Type Name Width Description

[31:0] WO List Cycle Count 32 0 = Cycle forever. This will set the device to

cycle forever. Not 0 will set the number of

cycles the device will sweep or step though the

list then stop. This applies for both start/stop

and step trigger modes.

Table 10. Register 0x0C LIST_BUFFER_POINTS (4 Bytes)

Bit Type Name Width Description

[31:0] WO Number of Buffer Points 32 Sets the number of frequency points to step

through in the buffer list. The number must be

equal to or less than the buffer length. This

number will overwrite the count determined

from the LIST_BUFFER_WRITE register.

Table 11. Register 0x0D LIST_BUFFER_WRITE (5 Bytes)

Bit Type Name Width Description

[39:0] WO Buffer Frequency 40 Writing this register stores the frequency point

into the list buffer held in RAM.

Writing 0x0000000000 to this buffer resets the

pointer to buffer location [0] and enables storing

data. Consecutive non-zero writes to this

register will increase the buffer counter up to

2047. Further writes beyond this point are not

recognized. Writing 0xFFFFFFFFFF to this

register at any time will terminate the write

process and stops the pointer increment. The

value at which the pointer stops is the new

count of list frequency points unless it is

overwritten by register LIST_FREQ_POINTS.

Table 12. Register 0x0E LIST_BUF_MEM_TRNSFER (1 Byte)

Bit Type Name Width Description

[0] WO Transfer Direction 1 0 = Transfers the contents of the list buffer into

EEPROM memory. The size of the transfer is set

by the list frequency points.

1 = Transfers the contents from EEPROM

memory to the list buffer (in RAM).

[7:1] WO Reserved 7 Set all bits to 0.

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 14 of 26

Table 13. Register 0x0F STORE_DEFAULT_STATE

Bit Type Name Width Description

[7:0] WO Reserved 8 Set all bits to 0. Calling this register will store the

current configuration into memory. On reset or power-

up these values are read from memory and set as the

default values. These values are:

 RF frequency

 List mode configuration

 RF mode

 Start/Stop/Frequency

 Dwell time

 Sweep/List cycles

 List buffer from EEPROM

Table 14. Register 0x10 DEVICE_STANDBY

Bit Type Name Width Description

[0] WO Device Standby 1 0 = Takes device out of standby.

1 = Puts device into standby. Most analog

circuits are powered down, reducing total power

consumption by approximately 70%.

[7:1] WO Reserved 7 Set all bits to 0.

Table 15. Register 0x20 DEVICE_STATUS (1 Byte)

Bit Typ

e

Name Width Description

[7:0] WO Reserved 8 Set all bits to 0. Sets up the read-back buffer

with contents of the device status. Contents are

immediately available for USB read. The

contents occupy effectively the lower two bytes.

In the case of SPI, contents are transferred to

the serial output buffer, so a second query to the

SERIAL_OUT_BUFFER register is required to

transfer its contents and also to clear the output

buffer.

[39:16] RO Reserved 24

[15:8] RO List Mode Configuration 8 The current list mode configuration parameters.

[7] RO Reserved 1

[6] RO RF Mode 1 0 = Single fixed tone mode, 1 = Sweep/list mode

[5] RO Device Standby Mode 1 1 = Device in standby.

[4] RO Fine PLL Status 1 1 = PLL is phase locked.

[3] RO Coarse PLL Status 1 1 = PLL is phase locked

[2] RO Sum PLL Status 1 1 = PLL is phase locked

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 15 of 26

[1] RO Sweep/List Triggered 1 0 = The device, although possibly set to

sweep/list mode, is not triggered and is in the

stopped state.

1 = The device has been triggered and is in the

middle of a triggered cycle.

[0] RO Reference Clock 1 0 = 200 MHz selected, 1 = 100 MHz selected.

Table 16. Register 0x21 DEVICE_INFO (1 Byte)

Bit Type Name Width Description

[1:0] WO Device Status 2 Writing this register will place the requested

contents into the output buffer. Contents are

immediately available for USB read. The

contents occupy effectively four bytes. In the

case of SPI, contents are transferred to the serial

output buffer, so a second query to the

SERIAL_OUT_BUFFER register is required to

transfer its contents and also to clear the output

buffer.

0 = Obtain the product serial number

1 = Obtain the hardware revision

2 = Obtain the firmware revision

3 = Obtain the manufacture date

[7:2] WO Reserved 6

[39:32] RO Reserved 8

[31:0] RO Data 32 Data for the requested parameter:

Product Serial Number – 32-bit unsigned

Hardware Revision – typecast to 32-bit float

Firmware Revision – typecast to 32-bit float

Manufacture Date – unsigned 32-bit

 [31:24] Year (last two digits)

 [23:16] Month

 [15:8] Day

 [7:0] Hour

Table 17. Register 0x22 LIST_BUFFER_READ (2 bytes)

Bit Type Name Width Description

[15:0] WO Buffer Address 16 The data point (0 – 2047) to read.

[39:0] RO Frequency in Hz 40 The data is returned in unsigned 5 bytes. Must

be converted to unsigned long long int.

 SC800 DEVICE REGISTERS

Rev 1.1 | Page 16 of 26

Table 18. Register 0x24 SERIAL_OUT_BUFFER (5 Bytes)

Bit Type Name Width Description

[39:0] WO Serial Out Buffer 40 Set all bits to 0. Use of this register is only

available for the SPI interface.

[39:0] RO Request Data 40 The data clocked back are the contents

requested by the 0x20, 0x21, or 0x22 registers.

Registers 0x20, 0x21, and 0x22 are query registers. With SPI, the write-only portion of the register

must be written first followed by reading register 0x24 to read back the requested data. With USB, the

data is available to be read into the register following the write of a query register.

 SC800 SERIAL PERIPHERAL INTERFACE

Rev 1.1 | Page 17 of 26

SERIAL PERIPHERAL INTERFACE (SPI)

The SPI interface is implemented using 8-bit length physical buffers for both the input and output,

hence they need to be read and cleared before consecutive bytes can be transferred to and from them.

The process of clearing the SPI buffer and decisively moving it into the appropriate register takes CPU

time, so a time delay is required between consecutive bytes written to or read from the device by the

host. The chip-select pin () must be asserted low before data is clocked in or out of the product. Pin

 must be asserted for the entire duration of a register transfer.

Once a full transfer has been received, the device will proceed to process the command and de-assert

low the SRDY pin. The status of this pin may be monitored by the host because when it is de-asserted

low, the device will ignore any incoming data. The device SPI is ready when the previous command is

fully processed and SRDY pin is re-asserted high. It is important that the host either monitors the

SRDY pin or waits for 500 us between register writes.

Figure 2. Clock phase.

Register writes are accomplished in a single write operation. Register buffer lengths vary depending

on the register; they vary in lengths of 2 to 6 bytes, with the first byte being the register address,

followed by the data associated with that register. All data transferred to and from the device are

clocked on the falling edge of the clock as shown in Figure 2. The () pin must be asserted low for a

minimum period of (TS, see Figure 3) before data is clocked in, and must remain low for the entire

register write. The clock rate may be as high as 5.0 MHz (TC =), however if the external SPI

signals do not have sufficient integrity due trace issues then the rate should be lowered.

Figure 3 SPI timing.

As mentioned above, the SPI architecture limits the byte rate due to the fact that after every byte

transfer the input and output SPI buffers need to be cleared and loaded respectively by the device SPI

MSB

CS

MISO

MOSI

CLK

MSB

LSB

LSB

TS TBTC

8 Bit Command/ Reg. Address Byte N (MSB) Byte N-1 (LSB)

CLK

DATA

CS

 SC800 SERIAL PERIPHERAL INTERFACE

Rev 1.1 | Page 18 of 26

engine. Data is transferred between the buffers and the internal registers. The time required to

perform this task is indicated by , which is the time interval between the end of one byte transfer

and the beginning of another. The recommended minimum time delay for is for write only

registers, and for query registers. The number of bytes transferred depends on the register. It is

important that the correct number of bytes is transferred for the associated device register, because

once the first byte (MSB) containing the device register is received, the device will wait for the

desired number of associated data bytes. The device will hang if an insufficient number of bytes are

written to the register. In order to clear the hung condition, the device will need an external hard

reset. The time required to process a command is also dependent on the command itself. Measured

times for command completions are between to after reception.

 WRITING THE SPI BUS

The SPI transfer size (in bytes) depends on the register being targeted. The MSB byte is the command

register address as noted in the Device Registers section. The subsequent bytes contain the data

associated with the register. As data from the host is being transferred to the device via the SDI

(MOSI) line, data present on its SPI output buffer is simultaneously transferred back, MSB first, via the

SDO (MISO) line. The data return is invalid for most transfers except for those registers querying for

data from the device. See Reading the SPI Bus section below for more information on retrieving data

from the device. Figure 4 shows the contents of a single 3 byte SPI command written to the device.

The Device Registers section provides information on the number of data bytes and their contents for

an associated register. There is a minimum of 1 data byte for each register even if the data contents are

“zeros”.

Figure 4. Single 3 byte transfer buffer.

READING THE SPI BUS

Data is simultaneously read back during a SPI transfer cycle. Requested data from a prior command is

available on the device SPI output buffers, and these are transferred back to the user host via the SDO

pin. To obtain valid requested data would require querying the SERIAL_OUT_BUFFER, which

requires 6 bytes of clock cycles; 1 byte for the device register (0x23) and 5 empty bytes (MOSI) to

clock out the returned data (MISO). An example of reading the device status from the device is shown

in Figure 5.

Figure 5. Reading queried data.

23 15 7 0

Register Address Byte 1 Byte 0

0x000x20

InvalidInvalid

CLK

MOSI

CS

MISO

0x00 0x00

Data Byte 3Invalid Data Byte 2

0x24

Request for device status Query SPI_OUTPUT_BUFFER for data

0x00 0x00

Data Byte 1 Data Byte 0

0x00

Data Byte 4

 SC800 USB INTERFACE

Rev 1.1 | Page 19 of 26

USB INTERFACE

The SC800 has a full speed USB interface that works in parallel with the SPI interface. Both interfaces

are active at the same time if the USB interface is available on the device and the SMODE pin is

pulled high. If the USB interface function is not available or used, it can nevertheless be used for

firmware update. It is recommended (as an alternative to JTAG) that pins USB_V, USB+, USB-, and

USBISP be routed to a pin header for possible future firmware updates even though the port is

unused for device control. The pin USBISP must be pulled high upon power-up or reset in order for

the device to operate correctly. If the pin is pulled down upon power-up or reset, the device will

remain in firmware update mode and will not function.

USB CONFIGURATION

The SC800 USB interface is USB 2.0 compliant running at Full Speed, capable of 12 Mbits per second

transfer rates. The interface supports three transfer or endpoint types:

 Control Transfer

 Interrupt Transfer

 Bulk Transfer

The endpoint addresses are provided in the C-language header file and are listed below:

The buffer lengths are sixty-four bytes for all endpoint types. The user should not exceed this length

or the device may not respond correctly. This information is provided to aid custom driver

development on host platforms other than those that are supported by SignalCore.

WRITING THE DEVICE REGISTERS DIRECTLY

Device register for the SC800 vary between two bytes and six bytes in length. The most significant

byte (MSB) is the command register address that specifies how the device should handle the

subsequent configuration data. The configuration data likewise needs to be ordered MSB first, that is,

// Define SignalCore USB Endpoints
#define SCI_ENDPOINT_IN_INT 0x81
#define SCI_ENDPOINT_OUT_INT 0x02
#define SCI_ENDPOINT_IN_BULK 0x83
#define SCI_ENDPOINT_OUT_BULK 0x04

// Define for Control Endpoints
#define USB_ENDPOINT_IN 0x80
#define USB_ENDPOINT_OUT 0x00
#define USB_TYPE_VENDOR (0x02 << 5)
#define USB_RECIP_INTERFACE 0x01

 SC800 USB INTERFACE

Rev 1.1 | Page 20 of 26

transmitted first. Input and output buffers of six bytes long are sufficient on the host. To ensure that a

register instruction has been fully executed by the device, reading a byte back from the device will

confirm that because the device will only return data upon full execution of the instruction, although

this is not necessary.

READING THE DEVICE REGISTERS DIRECTLY

Valid data is only available to be read back after writing one of the query registers such as 0x20, 0x21,

and 0x22. As soon as one of these registers is written, data is available on the device to be read back.

When reading the device, the MSB is returned as the first byte for a total of five bytes. Although not

all of the five bytes carry valid data, all five bytes must be read in as valid data beginning at the LSB.

USB DRIVER API

The SC800 USB driver provided by SignalCore is based on libusb-1.0 (www.libusb.org) and its API

library is available for the WindowsTM and LinuxTM operating systems. Source code for both platforms

is available upon request by emailing support@signalcore.com. The API functions are nothing more

than register wrappers called through the USB bulk transfer function. The C/C++ API library

functions are summarized in the table below and each function description is provided in the API

description section.

Function Description

sc800_SearchDevices Finds all the SC800 Devices connected to the host

sc800_OpenDevice Opens a USB session for the device

sc800_CloseDevice Closes a USB session for the device

sc800_SetFrequency Sets the device frequency for single fixed tone mode

sc800_SetRfMode Sets the RF output to fixed or sweep/list mode

sc800_ListModeConfig Configures the sweep/list behavior

sc800_ListSoftTrigger Software trigger

sc800_ListStartFrequency Sets the start frequency for sweep

sc800_ListStopFrequency Sets the stop frequency for sweep

sc800_ListStepFrequency Sets the step frequency for sweep

sc800_ListDwellTime Sets the dwell time at each frequency point

sc800_ListCycleCount Sets the number of cycles to repeat the sweep

sc800_ListBufferPoints Set the number of list points to step through

sc800_ListBufferWrite Write the frequency points to the list buffer in RAM

sc800_ListBufferTransfer Transfers the list points between RAM and EEPROM

sc800_StoreCurrentState Stores the current configuration as default on reset or power-up

sc800_SetDeviceStandby Sets the device in standby mode

sc800_GetDeviceStatus Gets the device status

sc800_GetDeviceInfo Gets the device information

sc800_ListBufferRead Reads the list points from list buffer in RAM

http://www.libusb.org/
mailto:support@signalcore.com

 SC800 USB INTERFACE

Rev 1.1 | Page 21 of 26

API DESCRIPTION

The API functions are contained in the sc800.dll for WindowsTM operating systems, or libsc800.so.1.0

for LinuxTM operating systems. For other operating systems or embedded systems, source code is

available for compilation by emailing support@signalcore.com. Information provided below

represents the contents of the C/C++ header file, sc800.h, but are expanded here, and listed for

convenience.

Function: sc800_SearchDevices

Definition: int sc800_SearchDevices(char **serialNumberList)

Output: char **serialNumberList (2-D array pointer list)

Description: sc800_SearchDevices searches for SignalCore SC800 devices connected to the host

computer and returns (int) the number of devices found. It also populates the char

array with their serial numbers. The user can use this information to open specific

device(s) based on their unique serial numbers. See sc800_OpenDevice function on

how to open a device.

Function: sc800_OpenDevice

Definition: sc800_deviceHandle_t *sc800_OpenDevice(char *devSerialNum)

Input: char * devSerialNum (serial number string)

Return: sc800_deviceHandle_t* (pointer to the handle)

Description: sc800_OpenDevice opens the device and returns a handle pointer for access.

Function: sc800_CloseDevice

Definition: int sc800_CloseDevice(sc800_deviceHandle_t *devHandle)

Input: sc800_deviceHandle_t *devHandle (handle to the device to be closed)

Description: sc800_CloseDevice closes the device associated with the device handle.

Example: Code to exercise the functions that open and close the device:
 // Declaring

#define MAXDEVICES 50
sc800_deviceHandle_t *devHandle; //device handle
int numOfDevices; // the number of device types found
char **deviceList; // 2D to hold serial numbers of the devices found
int status; // status reporting of functions

deviceList = (char**)malloc(sizeof(char*)*MAXDEVICES); // 50 serial numbers to search
for (i=0;i<MAXDEVICES; i++) // allocate 8 char for each device
 deviceList[i] = (char*)malloc(sizeof(char)*SCI_SN_LENGTH); // SCI SN has 8 char

numOfDevices = sc800_SearchDevices(deviceList); //searches for SCI for device type
if (numOfDevices == 0)
{
 printf("No signal core devices found or cannot not obtain serial numbers\n");

mailto:support@signalcore.com

 SC800 USB INTERFACE

Rev 1.1 | Page 22 of 26

 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);
 free(deviceList);
 return 1;
}
printf("\n There are %d SignalCore %s SC800 devices found. \n \n", //

numOfDevices, SCI_PRODUCT_NAME);
 i = 0;
 while (i < numOfDevices)
 {
 printf(" Device %d has Serial Number: %s \n", i+1, deviceList[i]);
 i++;
 }
// sc800_OpenDevice, open device 0
devHandle = sc800_OpenDevice(deviceList[0]);
// Free memory

 for(i = 0; i<MAXDEVICES;i++) free(deviceList[i]);
 free(deviceList); // Done with the deviceList

 //
// Do something with the device
//
status = sc800_CloseDevice(devHandle); // Close the device

Function: sc800_SetFrequency

Definition: int sc800_SetFrequency(sc800_deviceHandle_t *devHandle,

 unsigned long long int frequency)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: sc800_SetFrequency sets the single fixed tone RF frequency.

Function: sc800_SetRfMode

Definition: int sc800_SetRfMode(sc800_deviceHandle_t *devHandle,

 unsigned char rfMode)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned char rfMode (See document for bit info)

Description: sc800_SetRfMode sets the mode to single fixed tone generation or sweep/list mode.

Function: sc800_ListModeConfig

Definition: int sc800_ListModeConfig(sc800_deviceHandle_t *devHandle,

 const listMode_t *modeConfig)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 listMode_t *modeConfig (listMode setup)

Description: sc800_ListModeConfig configures the list mode behavior. See the document for more

information on the modeConfig structure.

 SC800 USB INTERFACE

Rev 1.1 | Page 23 of 26

Function: sc800_ListSoftTrigger

Definition: int sc800_ListSoftTrigger(sc800_deviceHandle_t *devHandle)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

Description: sc800_ListSoftTrigger triggers the device when it is configured for list mode and soft

trigger is selected as the trigger source.

Function: sc800_ListStartFrequency

Definition: int sc800_ListStartFrequency(sc800_deviceHandle_t *devHandle,

 unsigned long long int frequency)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: sc800_ListStartFrequency sets the sweep start frequency.

Function: sc800_ListStopFrequency

Definition: int sc800_ListStopFrequency(sc800_deviceHandle_t *devHandle,

 unsigned long long int frequency)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: sc800_ListStopFrequency sets the sweep stop frequency.

Function: sc800_ListStepFrequency

Definition: int sc800_ListStepFrequency(sc800_deviceHandle_t *devHandle,

 unsigned long long int frequency)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: sc800_ListStepFrequency sets the sweep step frequency.

Function: sc800_ListDwellTime

Definition: int sc800_ListDwellTime(sc800_deviceHandle_t *devHandle,

 unsigned int dwellTime)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned int dwellTime (Time in 500 s increments)

Description: sc800_ListDwellTime stet the sweep/list dwell time at each frequency point. Dwell

time is in 500 s increments (1 = 500 s, 2 = 1 ms, etc.).

Function: sc800_ListCycleCount

Definition: int sc800_ListCycleCount(sc800_deviceHandle_t *devHandle,

 unsigned int cycleCount)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned int cycleCount (number of cycles)

Description: sc800_ListCycleCount sets the number of sweep cycles to perform before stopping. To

repeat the sweep continuously, set the value to 0.

 SC800 USB INTERFACE

Rev 1.1 | Page 24 of 26

Function: sc800_ListBufferPoints

Definition: int sc800_ListPoints(sc800_deviceHandle_t *devHandle, unsigned int listPoints)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned int listPoints (number of points of the list buffer)

Description: sc800_ListPoints sets the number of list points in the list buffer to sweep or step

through. The list points must be smaller or equal to the points in the list buffer.

Function: sc800_ListBufferWrite

Definition: int sc800_ListBufferWrite(sc800_deviceHandle_t *devHandle,

 unsigned long long int frequency)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned long long int frequency (frequency in Hz)

Description: sc800_ListBufferWrite writes the frequency buffer sequentially. If frequency value =

0, the buffer pointer is reset to position 0 and subsequent writes will increment the

pointer. Writing 0xFFFFFFFFFF will terminate the sequential write operation and

sets the listBufferPoints to the last pointer value.

Function: sc800_ListBufferTransfer

Definition: int sc800_ListBufferTransfer(sc800_deviceHandle_t *devHandle,

 unsigned char transferMode)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned char transferMode (transfer to EEPROM or RAM)

Description: sc800_ListBufferTransfer transfers the frequency list buffer from RAM to EEPROM

or vice versa.

Function: sc800_StoreCurrentState

Definition: int sc800_StoreCurrentState(sc800_deviceHandle_t *devHandle)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

Description: sc800_StoreCurrentState stores the current configuration into EEPROM memory and

is used as the default state upon reset or power-up.

Function: sc800_SetDeviceStandby

Definition: int sc800_SetDeviceStandby(sc800_deviceHandle_t *devHandle,

 unsigned char standbyEnable)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned char standbyEnable (enable the device to go in standby mode)

Description: sc800_SetDeviceStandby will turn off most analog circuitry, reducing power

consumption, stops any current sweeps, and resets the triggers when standbyEnable is

set to 1. Setting to 0 will take the device out of standby. Current configurations are

not lost when standby is enabled, however a trigger must be applied to restart a

sweep.

 SC800 USB INTERFACE

Rev 1.1 | Page 25 of 26

Function: sc800_GetDeviceStatus

Definition: int sc800_ListStartFrequency(sc800_deviceHandle_t *devHandle,

 deviceStatus_t *deviceStatus)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 deviceStatus_t *deviceStatus (current device status)

Description: sc800_GetDeviceStatus gets the current device status such as the PLL lock status, RF

mode, sweep mode, sweep status, as well as the list mode configuration.

Function: sc800_GetDeviceInfo

Definition: int sc800_ListStartFrequency(sc800_deviceHandle_t *devHandle,

 deviceInfo_t *deviceInfo)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

Output: deviceInfo_t *deviceInfo (device information)

Description: sc800_GetDeviceInfo obtains the device information such as serial number, hardware

revision, firmware revision, and manufactured date.

Function: sc800_ListBufferRead

Definition: int sc800_ListBufferRead(sc800_deviceHandle_t *devHandle,

 unsigned int address, unsigned long long int *frequency)

Input: sc800_deviceHandle_t *devHandle (handle to the opened device)

 unsigned int address (buffer offset address)

Output: unsigned long long int *frequency (frequency)

Description: sc800_ListBufferRead reads the frequency at an offset address of the list buffer.

EXAMPLE CODE

Code examples in C/C++ demonstrate how the API simplifies programming the device. Code and

precompiled 32-bit and 64-bit executables are provided with the software package.

LABVIEW SUPPORT

A LabVIEW USB API is also provided for development on that platform. The API calls the sc800.dll

and is simply a wrapper of the C/C++ API. Another LabVIEW API based on NI-VISA is not part of

the supplied software package and is available separately by contacting support@signalcore.com for

details. The executable SoftFrontPanel.exe was developed in LabVIEW, and its source code is also

available from SignalCore.

mailto:support@signalcore.com

 SC800 REVISION NOTES

Rev 1.1 | Page 26 of 26

13401 Pond Springs Road, Suite 100

Austin, TX 78729, USA

Phone: 512 501 6000

Fax: 512 501 6001

Email: info@signalcore.com

Rev. 1.1

© 2014 SignalCore Inc. Information furnished by SignalCore is

believed to be accurate and reliable. However, no responsibility is

assumed by SignalCore for its use, nor for any infringements of

patents or other rights of third parties that may result from its use.

Specifications are subject to change without notice. No license is

granted by implication or otherwise under any patent or patent rights

of SignalCore. All rights reserved. Trademarks and registered

trademarks are the property of their respective owners. The word

“SignalCore”, its logo, and the words “preserving signal integrity” are

registered trademarks of SignalCore Incorporated.

REVISION NOTES

Rev 1.0 Original document

Rev 1.1 1. Changed spur and phase noise specifications.

2. Added measured data figures.

3. Added theory, device register, and communication buses sections.

Administrator
打字机

Administrator
线条

Administrator
打字机

Administrator
打字机

Administrator
打字机
北京坤驰科技有限公司 代理销售：010-82894372/15321373960 网址：www.queentest.cn

Administrator
打字机

