熱搜關(guān)鍵詞: PCIe高速數(shù)據(jù)采集卡RFSOC高速數(shù)據(jù)采集軟件無(wú)線電平臺(tái)VPX高速數(shù)據(jù)采集卡高速信號(hào)采集卡PCIe數(shù)據(jù)采集數(shù)字信號(hào)處理
太赫茲(Terahertz,1THz=1012Hz)泛指頻率在0.1~10THz波段內(nèi)的電磁波,位于紅外和微波之間,處于宏觀電子學(xué)向微觀光子學(xué)的過(guò)渡階段。早期太赫茲在不同的領(lǐng)域有不同的名稱,在光學(xué)領(lǐng)域被稱為遠(yuǎn)紅外,而在電子學(xué)領(lǐng)域,則稱其為亞毫米波、超微波等。在20世紀(jì)80年代中期之前,太赫茲波段兩側(cè)的紅外和微波技術(shù)發(fā)展相對(duì)比較成熟,但是人們對(duì)太赫茲波段的認(rèn)識(shí)仍然非常有限,形成了所謂的“THz Gap”。
太赫茲從頻率上看, 在無(wú)線電波和光波, 毫米波和紅外線之間; 從能量上看, 在電子和光子之間· 在電磁頻譜上,太赫茲波段兩側(cè)的紅外和微波技術(shù)已經(jīng)非常成熟,但是太赫茲技術(shù)基本上還是一個(gè)空白,其原因是在此頻段上,既不完全適合用光學(xué)理論來(lái)處理,也不完全適合微波的理論來(lái)研究。太赫茲系統(tǒng)在半導(dǎo)體材料、高溫超導(dǎo)材料的性質(zhì)研究、斷層成像技術(shù)、無(wú)標(biāo)記的基因檢查、細(xì)胞水平的成像、化學(xué)和生物的檢查,以及寬帶通信、微波定向等許多領(lǐng)域有廣泛的應(yīng)用。研究該頻段的輻射源不僅將推動(dòng)理論研究工作的重大發(fā)展,而且對(duì)固態(tài)電子學(xué)和電路技術(shù)也將提出重大挑戰(zhàn)。
2004年,美國(guó)政府將THz科技評(píng)為“改變未來(lái)世界的十大技術(shù)”之一,而日本于2005年1月8日更是將THz技術(shù)列為“國(guó)家支柱十大重點(diǎn)戰(zhàn)略目標(biāo)”之首,舉全國(guó)之力進(jìn)行研發(fā)。我國(guó)政府在2005年11月專門召開了“香山科技會(huì)議”,邀請(qǐng)國(guó)內(nèi)多位在THz研究領(lǐng)域有影響的院士專門討論我國(guó)THz事業(yè)的發(fā)展方向,并制定了我國(guó)THz技術(shù)的發(fā)展規(guī)劃。另外,美國(guó)、歐洲、亞洲、澳大利亞等許多國(guó)家和地區(qū)政府、機(jī)構(gòu)、企業(yè)、大學(xué)和研究機(jī)構(gòu)紛紛投入到THz的研發(fā)熱潮之中。
太赫茲的獨(dú)特性能給通信(寬帶通信)、雷達(dá)、電子對(duì)抗、電磁武器、天文學(xué)、醫(yī)學(xué)成像(無(wú)標(biāo)記的基因檢查、細(xì)胞水平的成像)、無(wú)損檢測(cè)、安全檢查(生化物的檢查)等領(lǐng)域帶來(lái)了深遠(yuǎn)的影響。由于太赫茲的頻率很高,所以其空間分辨率也很高;又由于它的脈沖很短(皮秒量級(jí))所以具有很高的時(shí)間分辨率。太赫茲成像技術(shù)和太赫茲波譜技術(shù)由此構(gòu)成了太赫茲應(yīng)用的兩個(gè)主要關(guān)鍵技術(shù)。同時(shí),由于太赫茲能量很小,不會(huì)對(duì)物質(zhì)產(chǎn)生破壞作用,所以與X射線相比更具有優(yōu)勢(shì)。另外,由于生物大分子的振動(dòng)和轉(zhuǎn)動(dòng)頻率的共振頻率均在太赫茲波段,因此太赫茲在糧食選種,優(yōu)良菌種的選擇等農(nóng)業(yè)和食品加工行業(yè)有著良好的應(yīng)用前景。太赫茲的應(yīng)用仍然在不斷的開發(fā)研究當(dāng)中,其廣袤的科學(xué)前景為世界所公認(rèn)。